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Abstract —In this paper, a unified theory for frequency-domain simula-

tion and sensitivity analysis of linear and nonlinear circuits is presented.

An elegant derivation expands the harmonic bsdance technique from non-

linear simulation to nonlinear adjoint sensitivity analysis. This provides an

efficient tool for the otherwise expensive but essentiaf gradient calcrda-

tions in design optimization. The hierarchical approach, widely used for

circuit simulation, is generahzed to sensitivity analysis and to computing

responses in any subnetwork at any level of the hierarchy. Therefore,

important aspects of frequency-domaht circuit CAD snch as simulation and

sensitivity anafysis, linear and nonlinear circuits, hierarchical and nonhier-

arcbical approaches, voltage and current excitations, or open- and short-

circnit terminations are unified in this general framework. Our theory

provides a key for the coming generation of microwave CAD software. It

will take advantage of the many existing and mature tecfudques such as the

syntax-oriented hierarchical analysis, optimization, and yield driven design

to handle nonlinear as well as finear circuits. Our novel sensitivity analysis

approach has been verified by a MESFET mixer example exhibiting a 90

percent saving of CPU time over the prevailing perturbation method.

1. INTRODUCTION

I N THIS PAPER, we present a unified approach to the

simulation and sensitivity y analysis of linear/nonlinear

circuits in the frequency domain. The linear part of the

circuit can be large and can be hierarchically decomposed,

highly suited to modern microwave CAD. Analysis of the

nonlinear part is performed in the time domain and the

large-signal steady-state periodic analysis of the overall

circuit is carried out by means of the harmonic balance

(HB) method. In the sensitivity analysis we exploit the

concept of the adj oint network technique.

The HB method has become an important tool for the

analysis of nonlinear circuits. The work of Rizzoli et al. [1],

Curtice and Ettenberg [2], Curtice [3], [4], Gilmore and

Rosenbaum [5], Gilmore [6], Camacho-Penalosa and

Aitchison [7] stimulated work on HB in the microwave

CAD community. The excellent paper by Kundert and

Sangiovanni-Vincentelli [8] provided systematic insight into

the HB method. Many others, e.g., [9]–[15], have also

contributed substantially to the state of the art of the HB
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technique. The first step toward design optimization was

made by Rizzoli et al. [1],who used the perturbation

method to approximate the gradients. A recent review of

this area was given by Rizzoli and Neri [16].

The adjoint network approach has been a classical vehi-

cle for sensitivity analysis of linear circuits [17], [18] and of

nonlinear time-domain or dc circuits [18], [19]. The exist-

ing methods, however, are not suitable for the sensitivity y

analysis of nonlinear circuits operating under large-signal

steady-state periodic or almost periodic conditions, espe-

cially in the context of the HB method. The HB analysis is

performed in the frequency domain and generates the

circuit responses through their spectra. The time-domain

approach, such as that of SPICE, is very inefficient in the

steady-state case since the analysis must be carried out

until the transient responses vanish. Therefore, the adj oint

network nonlinear time-domain sensitivity analysis, even if

applicable, would be inefficient as well. On the other hand,

the nonlinear clc analysis is only a part of the harmonic

balance analysis; moreover, it is integrated with the calcu-

lation of all harmonics simultaneously. If there are large-

signal ac sources in the circuit, the dc analysis cannot be

separated from the ac analysis. Therefore, the existing

nonlinear dc a.djoint network technique is not directly

applicable to the HB method.

In our paper, we extend to the HB technique the power-

ful adjoint network concept. The concept involves solving

a set of linear equations whose coefficient matrix is avail-

able in many existing HB programs. The solution of a

single adjoint system is sufficient for the computation of

sensitivities with respect to all parameters in both the

linear and nonlinear subnetworks, in the bias circuit. driv-

ing sources, and terminations. No parameter perturbation

or iterative simulations are required.

To make our theory highly suitable for microwave ori-

ented CAD programs, we have also developed a hierarchi-

cal treatment of the adjoint system analysis. Preferred by

leading experts, e.g. Jansen [20], and used in circuit simula-

tors such as Super-Compact ancl Touchstone, the syrttax-
oriented hierarchical approach hzs proved very convenient

and efficient in analyzing linear circuits. Our theory fur-

ther extends such an approach to adjoint sensitivity analy-

sis.
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TABLE I

NOTATION AND 13EFINITION

—

Notation Definition

w

N

H

k

%’,(k),
$(k)

V(k)>
l(k)

Vt, it

V, i

Y,(k)

Y(k)

total number of nodes (internal and external) of a linear
subnetwork.

number of cmcuit nodes (or ports) used in harmonic analysis.
Also, it is the number of external nodes for a typical
subnetwork of Fig 2.

number of harmonics, including DC.

harmontc index. k = O for DC, k = 1 for the fundamental
harmonic, k = 2, 3, , H-1 for other harmonics.

complex Nt-vectors indicating kth harmonic voltages or currents

at all nodes (both internal and external) of a linear subnetwork.

complex N-vectors indicating ktb harmonic voltages or currents
at alt externat nodes of any linear subnetwork (at the highest
level of hierarchy the nodes or ports at which the harmonic ba-
tance equations are formulated).

rest 2HNt-vectors containing real and imaginary parts of Vi(k)
or It(k) at all harmonics k, k =0, 1, , H-J

red 2HN-vectors containing real and imaginary parts of V(k) or
I(k)at all harmorticsk, k=O, t, .... H-1

Nt by Nc matrix repte$entmg the unreduced nodal admittance
matrix of a hnear subnetwork at harmonic k.

N by N matrix representing tbe reduced nodal admittance matrix
of a linear subnetwork at harmomc k

Notation flefinition

2HNt by 2HNt real matrix obtained by splitting the red and
imaginary parts of Y!(k) for all harmonics k, k = O, 1, .. . H-1.

2HN by 2fJN real matrix obtained by splitting the real and
imaginary parts of Y(k) for all harmomcs k, k = O, t, , H–1.

2HNt by 2HN6 real matrix representing the Jacobian defined in
(A2).

2HN by 2HN real matrix representing the Jacobian defined by
(5) Theinternal nodes of thelinear subcircuit are suppressed.

ZHNt real vector selecting tbe output voltage from the vector
v,

~HN red tector selecting the output
v.

voltage from the vectcu

[1
Yt(k) -U

[1

where U is O

UT o 1

and 1 n an N by N iden:ity matrix,

% by nE ,diwonal matr~ whose diagonal entries are the
termmatmg Impedances Z,, I = 1, 2, ,.,, ng

nt ?Y ,nt diag,Onal nlatri: whose diagonal entries are the
termmatmg admittances Y,, ! = t, 2, ,.,, tq.

nE-vectOr containing voltage excltat,ons E,, i = 1, 2, ..,, “E,

n[-vector cOntalning current excitatmns 1.1, i = I, 2, ..,, “p

The sensitivities we propose are exact in terms of the

harmonic balance method itself. Our exact adjoint sensitiv-

ity analysis can be used with various existing HB sirnula-

ticm techniques, e.g., the basic HB [8], the modified HB [6],

and the AIWT FIB [15]. The only computational effort

includes solving the adjoint linear equations and calculating

the Fourier tramforms of all time-domain derivatives at the

nonlinear element level. Significant CPU time savings are

achieved over the perturbation method.

In Section II, we define the notation used throughout

this paper. In Section III, the simulation of linear and

nonlinear circuits is reviewed under a general circuit hier-

archy. In Section IV, a new and unified treatment to

adjoint systems for linear and nonlinear circuits is intro-

duced. Novel sensitivity formulas for nonlinear circuits are

derived in Section V. Finally, in Section VI, a MESFET

mixer example is used to verify our theory.

II. NOTATION AND DEFINITION

We follow the notation of [8]. Real vectors containing

voltages and currents at time t are denoted by O(t) and

i(t). Capitals V(k) and Z(k) are used to indicate complex

vectors of voltages and currents at harmonic k. A sub-

script t at V(k) indicates that the vector contains the

nodal voltages at all Nt nodes (both internal and external)

of a linear subnetwork. If there is no subscript, then the

vector corresponds to the port voltages (currents) at all N

ports of the reduced subnetwork. A bar denotes the split

real and imaginary parts of a complex vector. In particu-

lar, ~ or ~ are real vectors containing the real and the

imaginary parts of V(k) or ~(k), respectively, for all

harmonics k, k== 0,1,. ... H – 1. The total number of

harmonics taken into consideration, including dc, is H.
The hat distinguishes quantities of the adjoint system. For

example, V(k) represents adjoint voltages at internal and

external nodes of a subnetwork at harmonic k. A detailed

definition of the notation is given in Table I.

HI. LINEAR AND NONLINEAR SIMULATION

A. Circuit Structure

Our exact adjoint sensitivity analysis can be used for

hierarchically structured linear subcircuits. Consider the

arbitrary circuit hierarchy of Fig. 1. A typical subnetwork

containing internal and external nodes is shown in Fig. 2.

A general representation of a terminated circuit is depicted

in Fig. 3. An unpartitioned or nonhierarchical approach is

a special case of Fig. 1 when only one level exists.

For a completely linear circuit, the sources and loads are

applied at the highest level of the hierarchy, as depicted in

Fig. 3. For a nonlinear circuit, the linear part of the overall

circuit can have an arbitrary hierarchy as illustrated by

Fig. 1 while the nonlinear part is connected directly at the

highest level to the linear part. Therefore, in any case we
consider an unterminated N-port circuit at the highest

level of hierarchy. Such an approach simultaneously facili-

tates both the effect of the reference plane in microwave

circuits and the need for the harmonic balance equations.

B. Hierarchical Simulation of the Linear Network

Hierarchical simulation of Iinear circuits has been suc-

cessfully used in many microwave CAD packages. It is

summarized and expanded here into a set of formulas,

enabling voltage responses at any nodes (internal or exter-

nal) for any subnetwork at any level to be systematically

computed. Firstly, we solve the terminated circuit at the
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I

B,

Fig. 1. An arbitrary circuit hierarchy. Each thick line represents a
group of-nodes. Each rectangular box represents a connection block for

a subcircuit. Each bottom circular box rerxesents a circuit element and
the top circular box represents the sourc& and loads.

external nodes

/ >
hnked to

higher level blocks
ii !

V(k)

Vt(k)

\ /
have to be hnked to T

lower level blocks all nodes (internal and external)
(a) (b)

Fig. 2. A typical subcircuit connection block: (a) as seen from Fig. 1;

(b) detailed representation of all the nodes of the subnetwork. Nodes at

the top (bottom) of the rectangular box are the external (external and
internal) nodes of the subnetwork.

highest level of the hierarchy using

(1)

where the overall quantity in the curly bracket is an N by

N matrix linking the port voltages F’(k) with the external

sources for the terminated circuit. As defined in Table I,

Y,(k) and Z,(k) are diagonal matrices containing termi-

nating admittances and impedances, respectively, of the

circuit shown in Fig. 3. Y(k) is the admittance matrix of

the unterminated circuit. V,(k) and IS(k) denote the volt-

age and current excitations of the circuit, respectively. The

solution vector V(k) contains external voltages of the

circuit block under consideration. Then, all (both internal

and external) nodal voltages K(k) of this subnetwork can

be obtained from the equation

(2)

where A(k) is the modified nodal admittance matrix of the

subnetwork, as defined in Table I. 1(k) represents cur-

rents into the subcircuit through its external ports.

The solution of (2), i.e., ~(k), provides external voltages

of all the subnetworks at the next level down the hierarchy.

Therefore, (2) is used iteratively for the first, second,

E,

E2

E‘E

1K
z,

E+ ~~tL1

z>

c

+ unterminated
circuit

Y, t 1,,

.

. I
“1

.
,
.

mlsnl
~tiJ---

Fig. 3. A representation of a terminated subnetwork. Both current and
voltage sources can be accommodated The overall port sequence is
such that ports 1.,2,. ... n~ correspond to voltage sources and ports

‘E +17 ‘E+29”””3 n E + n T correspond to current sources. The total
number of ports n N, i.e., N = n~ + nr,

. . . levels of the hierarchy until a,ll desired nodal voltages

are found.

Our formulas can directly accommodate both open- and

short-circuit terminations. For example, a short-circuit ter-

mination at port 1 simply means ZI = O in the matrix 2$
in (l). An open-circuit termination at port n ~ + 2 simply

means Yz = O in the matrix Y, in (l).

C. Simulation of Nonlinear Circuits

The frequency-domain simulation of a nonlinear circuit

is done effectively by the harmonic balance technique

[1]-[16]. The problem is to find a ~ such that

.—
F(v) ~i,,L(P)+iL(v) =0 (3)

where the vectors ~L and I~L are defined as the currents

into the linear and nonlinear parts at the ports of their

connection. ~ contains the split real and imaginary parts

of voltages, as defined in Table 1. The Newton update for

solving (3) is

Pnew= Fold – ~-’~( 7.,, ) (4)

where ~ is the Jacobian matrix defined by

.7A (dF’/aF)’. (5)

The (i, j)th entry of the Jacobian matrix ~ is the deriva-

tive of the i th entry of ~ with respect to the jth entry of

v.

In the context of the overall hierarchical structure, the

solution of (3) provides the external voltages V(k), k =
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IV. ADJOINT SYSTEM SIMULATION

Efficient and exact sensitivity analysis can be achieved

by solving an adjoint system. In this section, a new and

unified formulation of adjoint systems for hierarchically

structured linear/nonlinear circuits is presented.

A. A~oint System for Linear Networks

At the highest level of the hierarchy, the adjoint system

is excited by a unit source at the output port. Suppose the

output voltage P&t can be selected from V(k) by an

N-vector e as

VOU,=e~V(k). (6)

For example, if J’& is chosen as the voltage at the first

port, then the vector e contains 1 as the first entry and

zeros everywhere else. By solving

([:Yhl+[z’!):Iyw’k)=e ‘7)
we obtain adjoint voltages ~(k) at external ports at the

highest level of the hierarchy. ~(k), Z,(k), and Y(k) are

the same matrices as used in (l). In order to obtain adjoint

voltages E(k) at all (both internal and external) nodes of

the circuit block, we solve the equation

‘T(k)[-%l=[-kl‘8)
where A‘( k) is the transpose of the modified nodal admit-

tance matrix of the subnetwork used in (2). The solution

vector Z(k) provides external adjoint voltages for all

subnet works at the next level down the hierarchy. There-

fore, (8) can be used iteratively for the first, second,

. . . levels of the hierarchy until all desired adjoint voltages

are found.

Notice that (8) is a convenient formulation of the ad-

joint system since the LU factors of A(k) can already be

available from solving (2).

B. Adjoint System for Nonlinear Networks

Suppose FOU, is the real or imaginary part of output

voltage P&t and can be selected from the voltage vector ~

by a vector 2 as

The adjoint system is

F&= (m. (9)

the linear equation

jT; = ~ (lo)

where ~~is the Jacobian at the solution of (3). Notice that

~ and V are both 2HN-vectors containing the split real

and imaginary parts of voltages at the connection ports of

the linear and nonlinear subcircuits. According to ~our

notation ~ is defined for the original network and V is

defined for the adjoint network. Also notice that the LU

factors of ~ can be avqilable from the last iteration of (4).

Therefore, to obtain ~ from (10), we need only the for-

ward and backward substitutions.

The adjoint voltages can be computed even if the output

port is suppressed from the harmonic equation (3). Al-

though the theoretical derivation for this case is rather

involved, as given in the Appendix, we found a very logical

and easy-to-implement method to handle this situation.

First, we compute the adjoint voltages at the external ports

of the linear subnetwork. This can be done by disconnect-

ing the nonlinear part and then solving the linear part for

individual @rmonics separately. The resulting vector, de-

noted by ~~, is then transformed to the actual adjoint

excitations of the overall circuit (including both linear and

nonlinear parts) to be incorporated

The final equation takes the form

to (io) in place of Z.

(11)
,.

In (11), ~ and ~~ have exactly the same dimensions and

both represent the split real and imaginary parts of adjoint

voltages at the connection ports of the linear and nonlinear

subcircuits. The former is computed from the overall cir-

cuit and the latter is computed from the linear subcircuit

only.

Equations (10) or (11) provide adjoint voltages at exter-

nal ports at the highest level of the hierarchy. We then use

(8) iteratively for the first, second, . . . levels of the hierar-

chy to obtain adjoint voltages at both internal and external

nodes of all subnetworks.

V. SENSITIVITY ANALYSIS

A. A~oint System Approach to Sensitivity Evaluation

Let x be a design variable of the nonlinear circuit.

Differentiating (3) with respect to x gives

(f3F’/aF)T(@3x)+@ I/tlx)=o (12)

or

a P/ax= – Y“’( dF/ax) (13)

where ~ has been defined in (5). Premultiplying (13) by 2“

results in

8Fout/dx = – Z“j-’( dF/i3x)

= – t“( aF/dx). (14)

This expression is further simplified by considering the

locations of x in ~. Notice that each entry of vector ~
corresponds to a port and to a harmonic of the circuit.

Take, for instance, a nonlinear resistor described by i(t) =

i(o( t ), x) and connected across the jth port. The variable

x enters ~ at the positions relating to port j and harmonic

k, k= O,l,. ... H – 1, by the Fourier transform of

i(o(t), x). In this case, (14) is simplified to

d~OU,/dx =-~ Real [~(k) G*(k)] (15)
k

where F,(k) is the adjoint voltage at the j th port, G(k) is

the k th Fourier coefficient of d i/dX and superscript *

denotes the complex conjugate.
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TABLE II

SENSITIVITY EXPRESSIONSAT THE ELEMENT LEVEI

Type of Expression Applicable

Element* for Gb(k) Equation

linear G 1 (16a)

linear R -1 /R2 (16a)

linear C jwk (16a)

linear L -1 /(jwkL2) (16a)

nonlinear VCCS or [kth Fourier coefficient (16b)

resistor i = i(v(t),x) of aijax]

nonlinear capacitor Wk [kth Fourier (16c)

q = Q(v(t) ,x) coefficient of aq/axl

current driving 1 (16b) or (16.)+

source

voltage driving 1 (16b) or (16c)’

source source impedance

.
element is in branch b and contains x

+ (16b) for the real part and (16c) for the imaginary part of the driving

source

‘k is the kth harmonic angular frequemY

0,1,..., H–1, at the highest level of the linear part. The

desired internal and external voltages at all levels of the

hierarchy can be solved by using (2) iteratively.

B. Sensitivity Expressions

Suppose a variable x belongs to branch b. We have

derived the following general formula for computing the

exact sensitivity of P&t with respect to x:

TABLE 111

GRADIENTS OF MIXER CONVERSION GAIN

Variable x Gradient Expression

RF power c Real((WOut/~x)/VOut;l - 1

Rg(fRF) c Real((aVOut/ax)/VOutl + M2Rg(fRF))

Rd(flF) c Real((WOut/c9x) /VOut - I /(R~(fl~) + jXd(fIF)))

+ c/(2 Rd(f[ F))

xd(f,F) c Real((W’0ui/t3x )/VOUt - j/( R~(frF) + j ‘d(fIF)))

any other parameter c Real((Wout/~x)/Vout)

c = 20/tn i O

R and X represent the real and the imaginary parts of the impedance

terminations, respectively. Subscripts g and d represent the gate and the

drain terminations, respectively.

complex quantity NOut/8x is obtained by solving (9), (10) and (16) twice,

once for the real part and the other for the imaginary part. The LU
factors of J and the Fourier transforms of ele’ment sensitivities are common

between the two operations.

Notice that our sensitivity formulas permit variable x to

appear in any subcircuit at any level of the hierarchy since

all required voltages can be calcul,~ted as needed.

C. Comparison with the Perturbation Method

To approximate the sensitivities using the traditional

perturbation method, one needs a circuit simulation for

each variable. The best possible situation for this method

is that all simulations finish in one iteration. For our exact

adjoint sensitivity analysis, the major computation, i.e.,

solving the adjoint equations, is done only once for d

-1
- ~ Real [ ~,(k) V; (k)G~ (k)] if x = linear subnetwork (16a)

k

a Pout -~ Real [~,(k) G#(k)] if x e nonlinear VCCS or nonlinear resistor or reaJ part of a complex

ax=k driving source (16b)

I-~ Imag[~,(k)G~(k)] if x = nonlinear capacitor or imaginary part of a complex
k driving source. (16C)

Complex quantities V~(k) and fi~(k) are the voltages of

branch b + ~armonic k and are obtained from vectors

V(k) and ~(k), respectively., G~( k) denotes the sensitivity
expression of the element containing variable x. For exam-

ple, if x is the conductance of a linear resistor, G~(k) =1.
If x belongs to a,, nonlinear resistor represented by i =

i(o(t ), x), Gb(k) is the kth Fourier coefficient of d i/8x. A
list of various cases of G~(k) is given in Table II.

Our sensitivity formula (16) has no restrictions on the

selection of harmonic frequencies or the time samples. In a

multitone case, the index k in (16) corresponds to all the

harmonics used in the harmonic equation (3). When the

multidimensional Fourier transform is used, we simply

place a multidimensional summation in (16).

variables. A detailed comparison reveals that the worst

case for our approach takes less computation than the best

situation of the perturbation method. In our experiment,

we used only 1.6 percent of the CPU time required by the

perturbation method to obtain all sensitivities.

D. Gradient Vector fo~ Optimizatiorq

The novel formula (16) can be used as a key to forrnu- .

late the gradient vectors for design optimization and yield

maximization of nonlinear circuits, Table III lists the gra-

dients of a FET mixer conversion gain with respect to

various variables, expressed as simple functions of

8 vout/ax.
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VI. EXAMPLES

Example 1: Hierarchical Circuit Description

Many researchers, e.g., [3], and [7], have used FET mixer

examples to test harmonic balance simulators. Here, we

describe a mixer under the framework of hierarchical

analysis. Such a description fits in with existing commer-

cial software such as Super-Compact. The overall nonlin-

ear circuit with its biasing and driving sources is described

by a Super-Compact-like circuit file as follows.

* HIERARCHICAL ANALYSIS OF A MESFET MIXER
BLOCK
* INPUT MATCHING AND GATE BIAS SUBNETWORK

IND 34 L =15NH
IND 23 L =.5NH
CAP 30 C = 2.2PF
CAP 12 C = 2.2PF
IND 25 L =.55NH

* DEFINE THE SUBCIRCUIT AS A 3-PORT
CKT1 : 3PORT 145

END
BLOCK
* OUTPUT MATCHING AND DRAIN BIAS SUBNETWORK

IND 23 L=15NH
IND 12 L =1.lNH
CAP 20 C = 20PF
CAP 14 C = 20PF

* DEFINE THE SUBCIRCUIT AS A 3-PORT
CKT2: 3PORT 143

END
BLOCK
* THE HIGHEST HIERARCHY

CKT1 135
CKT2 724
CAP 6 C = 2PF

* A TRANSMISSION LINE BETWEEN PORT 60 AND PORT 7
MIC 67

* BIAS SOURCES
BIAS 3V= -.9
BI&S 4 V= 3.

* NONLINEAR FET
* NODE NUMBERS REFER TO GATE, DRAIN AND SOURCE

NFET 560
END
FREQUENCIES
* DEFINE LO FREQUENCY

TONE 1
llGHZ

* DEFINE RF FREQUENCY

TONE 2
12GHZ

END

SOURCES
* DEFINE LO DRIVING SOURCE

TONE 1
POWER 10 P = 7DBM

* DEFINE RF DRIVING SOURCE
TONE 2
POWER 10 P = – 15DBM

END

The LO and RF input matching and the gate bias circuits

are analyzed separately in subnetwork CKT1. The IF

output matching and drain bias circuits are analyzed in

subnetwork CKT2. These subnetworks are then connected

to a higher level of the hierarchy formulating an untermi-

nated circuit block. This circuit block is then connected to

nonlinear device ports. Using formulas developed in Sec-

tions 111 and IV, we are able to hierarchically simulate the

original circuit as well as the adjoint circuit. This is a direct

hit’, ! U*)

1
L,

R,

source

Fig. 4. A large-signal MESFET model. All parameter values are consis-

50

40

10

tent with [7].

I 1 , I
1

VI=O.ov

o
0 1 2 3 4

V*

Fig. 5. The dc characteristics of the MESFET model.

realization of the syntax-oriented step-by-step topological

description [20], permitting the sensitivity analysis of a

large circuit to be performed by solving a set of small

original and adjoint systems.

Example 2: Simulation and Sensitivity Analysis of a

MESFET Mixer

The MESFET mixer example reported in [7] was used to

verify our theory. Figs. 4 and 5 show the large-signal
MESFET model and the dc characteristics of the device.

The frequencies are fLo = 11 GHz, f~~ = 12 GHz, and

~1, = 1 GHz. The dc bias voltages are P&= – 0.9 V and

V&= 3.0 V. With LO power PLO= 7 dBm and RF power

P~~ = – 15 dBm, the conversion gain was 6.4 dB. Twenty-

six variables were considered, including all parameters in

the linear as well as the nonlinear parts, dc bias, LO

power, RF power, and IF, LO, and RF terminations.

Exact sensitivities of the conversion gain with respect to all

the variables are computed using our novel theory. The

results were in excellent agreement with those from the

perturbation method, as shown in Table IV. The circuit

was solved in 22 seconds on a VAX 8600. The CPU time
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TABLE IV
NUMERICAL VERIFICATION OF SENSITIVITIES OF THE MIXSR

Location Variable Exact Numerical Difference
of Variable Sensitivityy Sensitivity (%)

linear cd, 2.23080 2.23042 0.02
subnetwork Cgd -29.44595 -29.44659 0.00

c~e 0.00000 0.00000 0.03
Rg 3.17234 3.17214 0.01
Rd 6.42682 6.42751 0.01
R, 11.50766 11.50805 0.00

Rde -0.02396 -0.02412 0.66
Lg -0.50245 -0.50346 020
Ld -0.20664 -0.20679 0.07
L. 1.15334 1.15333 0.00

nonlinear Cg,o -6.17770 -6.17786 0.00
subnetwork’ r 0.49428 0.49414 0.03

v* -20.85730 -20.85758 0.00
Vfl -26.48210 -26,48041 0.01

‘da, 0.01064 0.01028 3.33

Id,p 9.93696 9.93680 0.00

bias and vG~ -31.62080 -31.62423 0.01
driving ‘DS -2.17821 -2.17823 0.00
sources ‘LO 2.76412 2.76412 0.00

PRF -0.05401 -0.05392 0.16

terminations Rg(fLO) 0.06671 0.06657 0.22
x*(fLo) 0.37855 0.37854 0.00
Rg(fRF) 0.78812 0.78798 0.02
xg(fRF) 0.45120 0.45119 0.00
Rd(fI~) 0.71451 0.71436 0.02
Xd(fu?) 0.10886 0.10871 0.14

“ Nonlinear elements are characterized by

cgB(vJ= c@/ Jl-v l/v,,

R,(VI)C@(VI) = T

and the function for im(vl, VZ) is shown in Fig. 5. whose mathematical
expression is consistent with [7]. V@, Vm, Vdm and Id,p are Parameters
in the function im(vl, V2).

for sensitivity analysis using our method and the perturba-

tion method are 3.7 seconds and 240 seconds, respectively.

The CPU time saving of our method is 90 percent for both

simulation and sensitivity calculations, and 98 percent if

only sensitivity y analysis is compared.
The dangling node between the nonlinear elements Cg,

and R,, a case which could cause trouble in HB programs,

is directly accommodated in our approach.

We have plotted selected sensitivities versus LO power

in Fig. 6. For example, as LO power is increased, conver-

sion gain becomes less’ sensitive to changes in gate bias

vGS.

I VII. CONCLUSIONS

This paper presents a unified theory for frequency-
domain simulation and sensitivity analysis of linear and

nonlinear circuits. Our formula (16) encompasses the ad-

joint network approach previously used in linear [17], [18]

and nonlinear dc circuits [18], [19] as special cases. Since

the simulation of nonlinear circuits is expensive, gradient

approximations for nonlinear circuits using repeated simu-

i

LO POWH? (ci~m)

Fig. 6. Sensitivities of conversion gain with respect to bias voltages as
functions of LO power.

lation are very costly. Consequently, the adjoint sensitivity

analysis becomes far more significant for nonlinear circuits

than for linear ones.

The hierarchical approach widely used for circuit simu-

lation is generalized for sensitivity analysis and for com-

puting responses in any subnetwork at any level of the
hierarchy. Therefore, important aspects of ftequency-

domain circuit CAD such as simulatiofi and sensitivity

analysis, linear and nonlinear circuits, hierarchical and

nonhierarchical approaches, voltage and current excita-

tions, and open- and short-circuit terminations are unified

in this general framework.

An immediate application of cur theory would be the

parameter extraction of nonlinear devices under I?F large-

signal excitations. The optimization criterion is to match

computed responses with the measured ones at dc and at

fundamental and higher harmonics. A powerful gradient

optimizer should be used. Gradie~t information would be

obtained using the adjoint network approach.

Our theory provides a key for the coming generation of

microwave CAD software. It can take advantage of many

existing and mature techniques such as the syntax-oriented

hierarchical analysis and optimization and yield driven

design to handle nonlinear as well as linear circuits.
Our novel sensitivity analysis approach has been verified

by a MESFET niixer example. Compared with the pertur-

bation method, the CPU time saving of our method is 90

percent for both simulation and sensitivity calculations,

and 98 percent for sensitivity analysis only.

APPENDIX A

DERIVATION OF EQUATION 11

(Al)

The harmonic balance equations can be formulated with

respect to all nodes of the circuit., i.e., without suppressing

the internal nodes in a single level description of the

circuit. In such a case the Jacobian matrix ~ can be
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defined similarly to (5), and

J= y+ QDTPT (A2)

where D is a 2HN X 2HN matrix representing the contri-

bution to ~ from nonlinear components, i.e.,

~= ~+ D=. (A3)

Matrices P and Q are 2HNt X 2HN incidence matrices

containing O’s and + 1’s.

Let

T=~T. (A4)

As with (9) and (10), based on (Al) the adjoint voltages at

both internal and external nodes can be computed as

fi~(~)-lZz =( T+ PDQT)-12,. (A5)

Applying the Householder formula [21] to (A5) we have
Q

K = T-%, – T-lP(D-l + QWIP)-l Q~T-lEt. (A6)

Notice that

(FT)-l=Q~T-lP. (A7)

Let

X=FT (A8)

;L=QTT” 12,. (A9)

Premultiplying (A6) by Q= gives

~4QTfi=~L- X-I(D-l+X-1)-lfiL. (AIO)

Again, using the Householder formula [21],

(D-l+ X-l) -&- X( D+ X)-lX (All)

and substituting (A3) and (A8) into (A1O) we get
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