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A Unified Theory for Frequency-Domain
Simulation and Sensitivity Analysis
of Linear and Nonlinear Circuits
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Abstract —In this paper, a unified theory for frequency-domain simula-
tion and sensitivity analysis of linear and nonlinear circuits is presented.
An elegant derivation expands the harmonic balance technique from non-
linear simulation to nonlinear adjoint sensitivity analysis. This provides an
efficient tool for the otherwise expensive but essential gradient calcula-
tions in design optimization. The hierarchical approach, widely used for
circuit simulation, is generalized to sensitivity analysis and to computing
responses in any subnetwork at any level of the hierarchy. Therefore,
important aspects of frequency-domain circuit CAD such as simulation and
sensitivity analysis, linear and nonlinear circuits, hierarchical and nonhier-
archical approaches, voltage and current excitations, or open- and short-
circuit terminations are unified in this general framework. Our theory
provides a key for the coming generation of microwave CAD software. It
will take advantage of the many existing and mature techniques such as the
syntax-oriented hierarchical analysis, optimization, and yield driven design
to handle nonlinear as well as linear circuits. Qur novel sensitivity analysis
approach has been verified by a MESFET mixer example exhibiting a 90
percent saving of CPU time over the prevailing perturbation method.

1. INTRODUCTION

N THIS PAPER, we present a unified approach to the

simulation and sensitivity analysis of linear /nonlinear
circuits in the frequency domain. The linear part of the
circuit can be large and can be hierarchically decomposed,
highly suited to modern microwave CAD. Analysis of the
nonlinear part is performed in the time domain and the
large-signal steady-state periodic analysis of the overall
circuit is carried out by means of the harmonic balance
(HB) method. In the sensitivity analysis we exploit the
concept of the adjoint network technique.

The HB method has become an important tool for the
analysis of nonlinear circuits. The work of Rizzoli et al. [1],
Curtice and Ettenberg [2], Curtice [3], [4], Giimore and
Rosenbaum [5], Gilmore [6], Camacho-Penalosa and
Aitchison [7] stimulated work on HB in the microwave
CAD community. The excellent paper by Kundert and
Sangiovanni-Vincentelli [8] provided systematic insight into
the HB method. Many others, e.g., [9]-[15], have also
contributed substantially to the state of the art of the HB

Manuscript received April 11, 1988; revised August 23, 1988.

The authors are with Optimization Systerns Associates Inc.. Dundas,
Ont., Canada L9H 5E7. J. W. Bandler and R. M. Biernacki are also with
the Simulation Optimization Systems Research Laboratory and the De-
partment of Electrical and Computer Engineering, McMaster University,
Hamilton, Canada L8S 4L7.

IEEE Log Number 8824205.

technique. The first step toward design optimization was
made by Rizzoli et al. [1], who used the perturbation
method to approximate the gradients. A recent review of
this area was given by Rizzoli and Neri [16].

The adjoint network approach has been a classical vehi-
cle for sensitivity analysis of linear circuits [17], [18] and of
nonlinear time-domain or dc circuits [18], [19]. The exist-
ing methods, however, are not suitable for the sensitivity
analysis of nonlinear circuits operating under large-signal
steady-state periodic or almost periodic conditions, espe-
cially in the context of the HB method. The HB analysis is
performed in the frequency domain and generates the
circuit responses through their spectra. The time-domain
approach, such as that of SPICE, is very inefficient in the
steady-state case since the analysis must be carried out
until the transient responses vanish. Therefore, the adjoint
network nonlinear time-domain sensitivity analysis, even if
applicable, would be inefficient as well. On the other hand,
the nonlinear dc analysis is only a part of the harmonic
balance analysis; moreover, it is integrated with the calcu-
lation of all harmonics simultaneously. If there are large-
signal ac sources in the circuit, the dc analysis cannot be
separated from the ac analysis. Therefore, the existing
nonlinear dc adjoint network technique is not directly
applicable to the HB method.

In our paper, we extend to the HB technique the power-
ful adjoint network concept. The concept involves solving
a set of linear equations whose coefficient matrix is avail-
able in many existing HB programs. The solution of a
single adjoint system is sufficient for the computation of
sensitivities with respect to all parameters in both the
linear and nonlinear subnetworks, in the bias circuit, driv-
ing sources, and terminations. No parameter perturbation
or iterative simulations are required.

To make our theory highly suitable for microwave ori-
ented CAD programs, we have also developed a hierarchi-
cal treatment of the adjoint system analysis. Preferred by
leading experts, e.g. Jansen [20], and used in circuit simula-
tors such as Super-Compact and Touchstone, the syntax-
oriented hierarchical approach has proved very convenicnt
and efficient in analyzing linear circuits. Our theory fur-
ther extends such an approach to adjoint sensitivity analy-
sis.
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TABLE I
NOTATION AND DEFINITION
Notation Definition

N, total number of nodes (internal and external) of a linear
subnetwork.

N number of circuit nodes {or ports) used in harmonic analysis.
Also, it is the number of external nodes for a typical
subnetwork of Fig 2.

H number of harmonics, including DC.

k harmonic index. k = 0 for DC, k = | for the fundamental
harmonie, k = 2, 3, , H-1 for other harmonics.

Vi(k), complex N,-vectors indicating kth harmonic voltages or  currents

1,(k) at all nodes (both internal and external) of a linear subnetwork.

V(k), complex N-vectors indicating kth harmonic voltages or currents

1(k) at all external nodes of any linear subnetwork (at the highest
level of hierarchy the nodes or ports at which the harmonic ba-
lance equations are formulated).

ch l-, real 2HN,-vectors containing real and imaginary parts of V(k)
or I(k) at all harmonics k, k =0, 1, . , H~]
' real 2HN-vectors contamning real and imaginary parts of V(k) or
I(k) at all harmonics k, k = @, 1, ..., H-1
Y (k) N, by N, matrix representing the unreduced nodal admittance
matrix of a linear subnetwork at harmonic k.
Y(k) N by N matrix representing the reduced nodal admittance matrix
of a linear subnetwork at harmonic k
Notation Definition
V, 2HN, by 2HN, real matrix obtained by splitting the real and
imaginary parts of Y,(k) for all harmonics k, k = 0, 1, .., H-1.
Y 2HN by 2HN real matrix obtained by splitting the real and
imaginary parts of Y(k) for ail harmonics k, k =0, 1, . , H-1.
3, 2HN, by 2HN, real matrix representing the Jacobian defined in
(A2).
J 2HN by 2HN real matrix representing the Jacobian defined by
(5) The internal nodes of the linear subcircuit are suppressed.
€, 2HN, real vector selecting the output voltage from the vector

t

®f

2HN real vector selecting the output voltage from the vector
V.

A(k) Yyk) -U where U is ]
ut 0 1

and 115 an N by N identity matrix.

Z.(k) ng by ng diagonal matrix whose diagonal entries are the
terminating impedances Z,, i = 1, 2, ..., ng

Y (k) n; by n; diagonal matrix whose diagonal entries are the
terminating admittances Y,, i =1, 2, .., n.

V,(k) ng-vector containing voltage excitations E,, i = 1, 2, ..., ng.

(k) ny-vector containing current excitations I, i=1, 2, ..., np.

The sensitivities we propose are exact in terms of the
harmonic balance method itself. Our exact adjoint sensitiv-
ity analysis can be used with various existing HB simula-
tion techniques, e.g., the basic HB [8], the modified HB [6],
and the APFT HB [15]. The only computational effort
includes solving the adjoint linear equations and calculating
the Fourier transforms of all time-domain derivatives at the
nonlinear element level. Significant CPU time savings are
achieved over the perturbation method.
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In Section 1I, we define the notation used throughout
this paper. In Section III, the simulation of linear and
nonlinear circuits is reviewed under a general circuit hier-
archy. In Section IV, a new and unified treatment to
adjoint systems for linear and nonlinear circuits is intro-
duced. Novel sensitivity formulas for nonlinear circuits are
derived in Section V. Finally, in Section VI, a MESFET
mixer example is used to verify our theory.

II. NOTATION AND DEFINITION

We follow the notation of [8]. Real vectors containing
voltages and currents at time ¢ are denoted by o(¢) and
(7). Capitals V(k) and I(k) are used to indicate complex
vectors of voltages and currents at harmonic k. A sub-
script ¢ at V,(k) indicates that the vector contains the
nodal voltages at all N, nodes (both internal and external)
of a linear subnetwork. If there is no subscript, then the
vector corresponds to the port voltages (currents) at all ¥
ports of the reduced subnetwork. A bar denotes the split
real and imaginary parts of a complex vector. In particu-
lar, ¥ or I are real vectors containing the real and the
imaginary parts of V(k) or I(k), respectively, for all
harmonics &k, k=0,1,---, H—1. The total number of
harmonics taken into consideration, including dc, is H.
The hat distinguishes quantities of the adjoint system. For
example, l%(k) represents adjoint voltages at internal and
external nodes of a subnetwork at harmonic k. A detailed
definition of the notation is given in Table .

II1. LINEAR AND NONLINEAR SIMULATION

A. Circuit Structure

Our exact adjoint sensitivity analysis can be used for
hierarchically structured linear subcircuits. Consider the
arbitrary circuit hierarchy of Fig. 1. A typical subnetwork
containing internal and external nodes is shown in Fig. 2.
A general representation of a terminated circuit is depicted
in Fig. 3. An unpartitioned or nonhierarchical approach is
a special case of Fig. 1 when only one level exists.

For a completely lincar circuit, the sources and loads are
applied at the highest level of the hierarchy, as depicted in
Fig. 3. For a nonlinear circuit, the linear part of the overall
circuit can have an arbitrary hierarchy as illustrated by
Fig. 1 while the nonlinear part is connected directly at the
highest level to the linear part. Therefore, in any case we
consider an unterminated N-port circuit at the highest
level of hierarchy. Such an approach simultaneously facili-
tates both the effect of the reference plane in microwave
circuits and the need for the harmonic balance equations.

B. Hierarchical Simulation of the Linear Network

Hierarchical simulation of linear circuits has been suc-
cessfully used in many microwave CAD packages. It is
summarized and expanded here into a set of formulas,
enabling voltage responses at any nodes (internal or exter-
nal) for any subnetwork at any level to be systematically
computed. Firstly, we solve the terminated circuit at the
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Fig. 1. An arbitrary circuit hierarchy. Each thick line represents a
group of nodes. Each rectangular box represents a connection block for
a subcircuit. Each bottom circular box represents a circuit element and
the top circular box represents the sources and loads.

external nodes

e ——
linked to 102 N
higher ievel blocks T [} o V(k)

o I HC
ll iéo ]

1 2 Ne-N NegN+2 N;

Vi(k)

have to be linked to v
lower level blocks all nodes (internal and external)

(a)

Fig. 2. A typical subcircuit connection block: (a) as seen from Fig. 1;
(b) detailed representation of all the nodes of the subnetwork. Nodes at
the top (bottom) of the rectangular box are the external (external and
internal) nodes of the subnetwork.

highest level of the hierarchy using

8 v+ [47 Spreofroo- {70
m

where the overall quantity in the curly bracket is an N by
N matrix linking the port voltages V(k) with the external
sources for the terminated circuit. As defined in Table I,
Y (k) and Z (k) are diagonal matrices containing termi-
nating admittances and impedances, respectively, of the
circuit shown in Fig. 3. ¥(k) is the admittance matrix of
the unterminated circuit. ¥,(k) and I (k) denote the volt-
age and current excitations of the circuit, respectively. The
solution vector V(k) contains external voltages of the
circuit block under consideration. Then, all (both internal
and external) nodal voltages V,(k) of this subnetwork can
be obtained from the equation

ZCINE
C el o P8 @

where A(k) is the modified nodal admittance matrix of the
subnetwork, as defined in Table I. I(k) represents cur-
rents into the subcircuit through its external ports.

The solution of (2), i.e., V,(k), provides external voltages
of all the subnetworks at the next level down the hierarchy.
Therefore, (2) is used iteratively for the first, second,
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Fig. 3. A representation of a terminated subnetwork. Both current and
voltage sources can be accommodated The overall port sequence is
such that ports 1,2,-+,ny correspond o voltage sources and ports
ng+1l, ng+2,---,ng+n; correspond to current sources. The total
number of ports is N, ie., N=ng+n;.

-+« levels of the hierarchy until all desired nodal voltages
are found.

Our formulas can directly accommodate both open- and
short-circuit terminations. For example, a short-circuit ter-
mination at port 1 simply means Z, =0 in the matrix Z,
in (1). An open-circuit termination at port n,+2 simply
means Y, = 0 in the matrix Y, in (1).

C. Simulation of Nonlinear Circuits

The frequency-domain simulation of a nonlinear circuit
is done effectively by the harmonic balance technique
[1]-[16]. The problem is to find a ¥ such that

(3)

where the vectors I, and I, are defined as the currents
into the linear and nonlinear parts at the ports of their
connection. ¥ contains the split real and imaginary parts
of voltages, as defined in Table 1. The Newton update for
solving (3) is

F(I_/) £ iNL(?) + I—L(—I;) =0

(4)
where J is the Jacobian matrix defined by

T&(aFT0V)" . (5)
The (i, j)th entry of the Jacobian matrix J is the deriva-
tive of the ith entry of F with respect to the jth entry of
V.

In the context of the overall hierarchical structure, the
solution of (3) provides the external voltages V(k), k=
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IV. ADJOINT SYSTEM SIMULATION

Efficient and exact sensitivity analysis can be achieved
by solving an adjoint system. In this section, a new and
unified formulation of adjoint systems for hierarchically
structured linear /nonlinear circuits is presented.

A. Adjoint System for Linear Networks

At the highest level of the hierarchy, the adjoint system
is excited by a unit source at the output port. Suppose the
output voltage V,,, can be selected from V(k) by an
N-vector e as

7

o =€ V(k). (6)
" For example, if ¥, is chosen as the voltage at the first
port, then the vector e contains 1 as the first entry and

zeros everywhere else. By solving

1 0 Z s ( k ) 0 T, > —
{[0 n(k)]*[ ( l]y (k)}V(k) —e (7)
we obtain adjoint voltages V(k) at external ports at the
highest level of the hierarchy. Y,(k), Z.(k), and Y(k) are
the same matrices as used in (1). In order to obtain adjoint
voltages 17,( k) at all (both internal and external) nodes of
the circuit block, we solve the equation

ey V) || 0
T I I T

where A7(k) is the transpose of the modified nodal admit-
tance matrix of the subnetwork used in (2). The solution
vector 17,( k) provides external adjoint voltages for all
subnetworks at the next level down the hierarchy. There-
fore, (8) can be used iteratively for the first, second,
- - - levels of the hierarchy until all desired adjoint voltages
are found.

Notice that (8) is a convenient formulation of the ad-
joint system since the LU factors of 4(k) can already be
available from solving (2).

B. Adjoint System for Nonlinear Networks

Suppose ¥, is the real or imaginary part of output
voltage V. and can be selected from the voltage vector V
by a vector e as

7 =TV

O

(©)
The adjoint system is the linear equation
JV=¢ (10)
where J is the Jacobian at the solution of (3). Notice that
V and ¥ are both 2HN-vectors containing the split real
and imaginary parts of voltages at the connection ports of
the linear and nonlinear subcircuits. According to our
notation ¥ is defined for the original network and ¥ is
defined for the adjoint network. Also notice that the LU
factors of J can be available from the last iteration of (4).
Therefore, to obtain ¥ from (10), we need only the for-
ward and backward substitutions.
The adjoint voltages can be computed even if the output
port is suppressed from the harmonic equation (3). Al-
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though the theoretical derivation for this case is rather
involved, as given in the Appendix, we found a very logical
and easy-to-implement method to handle this situation.
First, we compute the adjoint voltages at the external ports
of the linear subnetwork. This can be done by disconnect-
ing the nonlinear part and then solving the linear part for
individual harmonics separately. The resulting vector, de-
noted by ¥,, is then transformed to the actual adjoint
excitations of the overall circuit (including both linear and
nonlinear parts) to be incorporated to (10) in place of e.
The final equation takes the form
JV=YTV,. (11)

In (11), ¥ and V—L have exactly the same dimensions and
both represent the split real and imaginary parts of adjoint
voltages at the connection ports of the linear and nonlinear
subcircuits. The former is computed from the overall cir-
cuit and the latter is computed from the linear subcircuit
only. '

Equations (10) or (11) provide adjoint voltages at exter-
nal ports at the highest level of the hierarchy. We then use
(8) iteratively for the first, second, - - - levels of the hierar-
chy to obtain adjoint voltages at both internal and external
nodes of all subnetworks.

V. SENSITIVITY ANALYSIS
A. Adjoint System Approach to Sensitivity FEvaluation

Let x be a design variable of the nonlinear circuit.
Differentiating (3) with respect to x gives

(aF7/aV) (0¥ /0x)+(3F/dx) =0  (12)

or

AV/dx=—J YIF/dx) (13)
where J has been defined in (5). Premultiplying (13) by &7
results in

OV, /0x=—2&T YIF/dx)

=—VT(3F/9x). (14)
This expression is further simplified by considering the
locations of x in F. Notice that each entry of vector F
corresponds to a port and to a harmonic of the circuit.
Take, for instance, a nonlinear resistor described by i(¢) =
i(v(t), x) and connected across the jth port. The variable
x enters F at the positions relating to port j and harmonic
k, k=0,1,---, H—1, by the Fourier transform of
i(v(t), x). In this case, (14) is simplified to

Wy /3x ==Y, Real [V (k)G*(k)] (15)
k

where 171( k) is the adjoint voltage at the jth port, G(k) is
the kth Fourier coefficient of di/dx and superscript *
denotes the complex conjugate.
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TABLE 11
SENSITIVITY EXPRESSIONS AT THE ELEMENT LEVEL
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TABLE III
GRADIENTS OF MIXER CONVERSION GAIN

Type of Expression Applicable
Element” for Gy(k) Equation
linear G 1 (16a)
linear R -1/R? (16a)
linear C jwy (16a)
linear L -1/(Gw,L?) (16a)
nonlinear VCCS or . [kth Fourier coefficient (16b)

resistor i = i(v(t),x) of 8i/8x]

nonlinear capacitor w [kth Fourier (16¢)

q = q(v(t),x) coefficient of dq/dx]

current driving 1 (16b) or (16¢c)*
source

voltage driving 1 (16b) or (16¢)*

source source impedance

element is in branch b and contains x

(16b) for the real part and (16¢) for the imaginary part of the driving
source

W is the kth harmonic angular frequency

0,1,---, H—1, at the highest level of the linear part. The
desired internal and external voltages at all levels of the
hierarchy can be solved by using (2) iteratively.

B. Sensitivity Expressions

Suppose a variable x belongs to branch b. We have
derived the following general formula for computing the
exact sensitivity of ¥, with respect to x:

Variable x Gradient Expression

RF power ¢ Real{(8V,,/8x)/V ) - 1

Rg(fRF) ¢ Real{(8V ,,,/8%)/V oy} + c/(zRg(fRF))

Ry(fyr) ¢ Real{(dV,,,/3x)/V oy - 1/(Ry(fip) + jXq(fip))}
+ ¢/(2R4(f1p))

Xq(fip) ¢ Real{(3V,,4/8x)/V o = 3/ (Ry(frp) + iXg(fip))}

any other parameter ¢ Real{(8V ,,4/9x)/V,

1
out)

¢ =20/én10

R and X represent the real and the imaginary parts of the impedance
terminations, respectively. Subscripts g and d represent the gate and the
drain terminations, respectively.

complex quantity 3V, ./8x is obtained by solving (9), (10) and (16) twice,
once for the real part and the other for the imaginary part. The LU
factors of J and the Fourier transforms of element sensitivities are common
between the two operations.

Notice that our sensitivity formulas permit variable x to
appear in any subcircuit at any level of the hierarchy since
all required voltages can be calculated as needed.

C. Comparison with the Perturbation Method

To approximate the sensitivities using the traditional
perturbation method, one needs a circuit simulation for
each variable. The best possible situation for this method
is that all simulations finish in one iteration. For our exact
adjoint sensitivity analysis, the major computation, ie.,
solving the adjoint equations, is done only once for all

—~ Y Real [Vb(k)V,,*(k)G,f(k)] if x € linear subnetwork (16a)
k
Wow | — X Real[V,(k)G#(k)] if x € nonlinear VCCS or nonlinear resistor or real part of a complex
ax k driving source (16b)
~ ¥ Imag[V, (k)G (k)] if x € nonlinear capacitor or imaginary part of a complex
k driving source. (16¢)

Complex quantities V,(k) and Vb(k) are the voltages of
branch b at harmonic & and are obtained from vectors
V,(k) and V(k), respectively. G,(k) denotes the sensitivity
expression of the element containing variable x. For exam-
ple, if x is the conductance of a linear resistor, G (k) =1.
If x belongs to a nonlinear resistor represented by i=
i(v(2), x), G,(k) is the kth Fourier coefficient of di/dx. A
list of various cases of G,(k) is given in Table II.

Our sensitivity formula (16) has no restrictions on the
selection of harmonic frequencies or the time samples. In a
multitone case, the index k in (16) corresponds to all the
harmonics used in the harmonic equation (3). When the
multidimensional Fourier transform is used, we simply
place a multidimensional summation in (16).

variables. A detailed comparison reveals that the worst
case for our approach takes less computation than the best
situation of the perturbation method. In our experiment,
we used only 1.6 percent of the CPU time required by the
perturbation method to obtain all sensitivities.

D. Gradient Vector for Optimization

The novel formula (16) can be used as a key to formu-
late the gradient vectors for design optimization and yield
maximization of nonlinear circuits. Table III lists the gra-
dients of a FET mixer conversion gain with respect to
various variables, expressed as simple functions of
OV /3.
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VI

Example 1. Hierarchical Circuit Description

Many researchers, e.g., [3], and [7], have used FET mixer
examples to test harmonic balance simulators. Here, we
describe a mixer under the framework of hierarchical
analysis. Such a description fits in with existing commer-
cial software such as Super-Compact. The overall nonlin-
ear circuit with its biasing and driving sources is described
by a Super-Compact-like circuit file as follows.

ExAMPLES

* HIERARCHICAL ANALYSIS OF A MESFET MIXER
BLOCK
INPUT MATCHING AND GATE BIAS SUBNETWORK
IND 34L=15NH
IND 23L=.5NH
CAP 30C=22PF
CAP 12C=22PF
IND 25 L=.55NH
* DEFINE THE SUBCIRCUIT AS A 3-PORT
CKT1: 3PORT 145
END
BLOCK
OUTPUT MATCHING AND DRAIN BIAS SUBNETWORK
IND 23L=15NH
IND 12L=11NH
CAP 20 C=20PF
CAP 14 C=20PF
*  DEFINE THE SUBCIRCUIT AS A 3-PORT
CKT2: 3PORT 143
END
BLOCK
THE HIGHEST HIERARCHY
CKT1135
CKT2724
CAP 6 C=2PF
* A TRANSMISSION LINE BETWEEN PORT 6 0 AND PORT 7
MIC 67
*  BIAS SOURCES
BIAS 3V=-.9
BIAS 4V=3.
* NONLINEAR FET
* NODE NUMBERS REFER TO GATE, DRAIN AND SOURCE
NFET 560
END
FREQUENCIES
DEFINE LO FREQUENCY
TONE 1
11GHZ
* DEFINE RF FREQUENCY
TONE 2
12GHZ
END
SOURCES
*  DEFINE LO DRIVING SOURCE
TONE 1
POWER 1 0 P =7DBM
*  DEFINE RF DRIVING SOURCE
TONE 2
POWER 1 0 P= —-15DBM
END

The LO and RF input matching and the gate bias circuits
are analyzed separately in subnetwork CKTI. The IF
output matching and drain bias circuits are analyzed in
subnetwork CKT2. These subnetworks are then connected
to a higher level of the hierarchy formulating an untermi-
nated circuit block. This circuit block is then connected to
nonlinear device ports. Using formulas developed in Sec-
tions III and IV, we are able to hierarchically simulate the
original circuit as well as the adjoint circuit. This is a direct
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Ly Ry
A MA————0 drain

9
gate Ow——MM——Y

Cgs(V 1)

= Cgs
Ri(v4)

T

vy,
Im( L

source

Fig. 4. A large-signal MESFET model. All parameter values are consis-
tent with [7].

im(U1,V2)

The dc characteristics of the MESFET model.

Fig. 5.

realization of the syntax-oriented step-by-step topological
description [20], permitting the sensitivity analysis of a
large circuit to be performed by solving a set of small
original and adjoint systems.

Example 2: Simulation and Sensitivity Analysis of a
MESFET Mixer

The MESFET mixer example reported in [7] was used to
verify our theory. Figs. 4 and 5 show the large-signal
MESFET model and the dc characteristics of the device.
The frequencies are fio=11 GHz, frp=12 GHz, and
fir=1 GHz. The dc bias voltages are V;o=—0.9 V and

bs = 3.0 V. With LO power P, =7 dBm and RF power
Py = —15 dBm, the conversion gain was 6.4 dB. Twenty-
six variables were considered, including all parameters in
the linear as well as the nonlinear parts, dc bias, LO
power, RF power, and IF, LO, and RF terminations.
Exact sensitivities of the conversion gain with respect to all
the variables are computed using our novel theory. The
results were in excellent agreement with those from the
perturbation method, as shown in Table IV. The circuit
was solved in 22 seconds on a VAX 8600. The CPU time
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TABLE 1V
NUMERICAL VERIFICATION OF SENSITIVITIES OF THE MIXER

Location Variable Exact Numerical Difference
of Variable Sensitivity Sensitivity (%)
linear [oFR 2.23080 2.23042 0.02
subnetwork Cea -29.44595 -29.44659 0.00
Cae 0.00000 0.00000 0.03
g 3.17234 3.17214 0.0t
Rq 6.42682 6.42751 0.01
R, 11.50766 11.50805 0.00
Rae -0.02396 -0.02412 0.66
L, -0.50245 -0.50346 020
Ly -0.20664 -0.20679 0.07
L, 1.15334 1.15333 0.00
nonlinear =~ Cgy ~6.17770 -6.17786 0.00
subnetwork T 0.49428 0.49414 0.03
V, -20.85730 ~20.85758 0.00
Yoo -26.48210 ~26.48041 0.01
\Z™ 0.01064 0.01028 3.33
Lasp 9.93696 9.93680 0.00
bias and Vas -31.62080 ~31.62423 0.01
driving Vps -2.17821 -2,17823 0.00
sources Pio 2.76412 2.76412 0.00
Prp -0.05401 -0.05392 0.16
terminations Rz(fm) 0.06671 0.06657 0.22
X{fro) 0.37855 0.37854 0.00
R (frp) 0.78812 0.78798 0.02
X(frp) 0.45120 0.45119 0.00
Ry(fp) 0.71451 0.71436 0.02
X4(fip) 0.10886 0.10871 0.14

« . .
Nonlinear elements are characterized by

Cgl(vl)=cpo/\/l“/1/v.a
Ryv)Cqlvy) =7
and the function for ig(v,, v,) is shown in Fig. 5, whose mathematical

expression is consistent with [7]. V,, Vo, Vi and Iy, are parameters
in the function ig(vy, v3).

for sensitivity analysis using our method and the perturba-
tion method are 3.7 seconds and 240 seconds, respectively.
The CPU time saving of our method is 90 percent for both
simulation and sensitivity calculations, and 98 percent if
only sensitivity analysis is compared.

The dangling node between the nonlinear elements C,,
and R,, a case which could cause trouble in HB programs,
is directly accommodated in our approach.

“We have plotted selected sensitivities versus LO power
in Fig. 6. For example, as LO power is increased, conver-
sion gain becomes less sensitive to changes in gate bias
Vis-

« VIL

This paper presents a unified theory for frequency-
domain simulation and sensitivity analysis of linear and
nonlinear circuits. Our formula (16) encompasses the ad-
joint network approach previously used in linear [17], [13]
and nonlinear dc circuits [18], [19] as special cases. Since
the simulation of nonlinear circuits is expensive, gradient
approximations for nonlinear circuits using repeated simu-
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Fig. 6. Sensitivities of conversion gain with respect to bias voltages as
functions of LO power.

lation are very costly. Consequently, the adjoint sensitivity
analysis becomes far more significant for nonlinear circuits
than for linear cnes.

The hierarchical approach widely used for circuit simu-
lation is generalized for sensitivity analysis and for com-
puting responses in any subnetwork at any level of the
hierarchy. Therefore, important aspects of frequency-
domain circuit CAD such as simulation and sensitivity
analysis, linear and nonlinear circuits, hierarchical and
nonhierarchical approaches, voltage and current excita-
tions, and open- and short-circuit terminations are unified
in this general framework.

An immediate application of our theory would be the
parameter extraction of nonlinear devices under RF large-
signal excitations. The optimization criterion is to maich
computed responses with the measured ones at dc and at
fundamental and higher harmonics. A powerful gradient
optimizer should be used. Gradient information would be
obtained using the adjoint network approach.

Our theory provides a key for the coming generation of
microwave CAD software. It can take advantage of many
existing and mature techniques such as the syntax-oriented
hierarchical analysis and optimization and yield driven
design to handle nonlinear as well as linear circuits.

Our novel sensitivity analysis approach has been verified
by a MESFET miixer example. Compared with the pertur-
bation method, the CPU time saving of our method is 90
percent for both simulation and sensitivity calculations,
and 98 percent for sensitivity analysis only.

APPENDIX A
DERIVATION OF EQUATION 11

Suppose
?

o = &; Vi (A1)
The harmonic balance equations can be formulated with
respect to all nodes of the circuit. i.e., without suppressing
the internal nodes in a single level description of the

circuit. In such a case the Jacobian matrix J, can be
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defined similarly to (5), and
J,=Y,+QD"P" (A2)

where D is a 2HN X 2HN matrix representing the contri-
bution to J from nonlinear components, 1..,

J=Y+DT. (A3)

Matrices P and @ are 2HN, X2HN incidence matrices
containing (’s and +1’s.
Let

T=¥". (A4)

As with (9) and (10), based on (A1) the adjoint voltages at
both internal and external nodes can be computed as

V.2 (J7) e, = (T+PDQT) G, (AS)
Applying the Householder formula [21] to (AS) we have

V=T %,— T 'P(D~'+ Q7T 'P) 'Q'T %, (A6)
Notice that

(Y7) ' =071 'P. (A7)
Let
xX=Y7 (A8)
V. =0T %, (A9)
Premultiplying (A6) by Q7 gives
VAQTV =V —-x (D '+ X 1) 'V,. (Al0)
Again, using the Householder formula [21],
(D'+X ) '=X-X(D+X)7'x (A11)
and substituting (A3) and (A8) into (A10) we get
V=(Ji")'YTV, (A12)
or
JV=Y'V, (A13)
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